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Abstract 
This paper introduces the Speech Articulation Toolkit, an 
open-source collection of Python 3 utilities for quantitative 
analysis of ultrasound image data. SATKit presently 
emphasizes pixel-based measures as a complement to more 
commonly used contour tracking methods. We provide an 
overview of the core utilities of the present version of SATKit: 
pixel difference, which characterizes the amount of change 
from frame to frame; optical flow, which gauges the 
magnitude and direction of apparent motion between frames; 
and dimensionality reduction, here focusing on capturing 
patterns of covariation in pixel brightness. 
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1. Introduction 
The analytical landscape in ultrasound research is mainly 
based on contour tracking methods (Stone 2005; Kochetov 
2019). Segmentation of contours from ultrasound images often 
involves time-consuming manual intervention or hand-
correction, which may introduce replicability concerns (cf. 
Hoole & Pouplier 2017; Roettger 2019). Inter-speaker 
comparison is also often hindered by the need to normalize for 
differences in morphology, overall tongue size, and probe 
orientation and stabilization method (Slud et al. 2002; Heyne 
et al. 2019). 

Even as automated tongue contour tracking has improved in 
accuracy with gradual refinements to the method (e.g. Li et al. 
2005; Xu et al. 2016; Laporte & Ménard 2018), certain 
fundamental limitations remain. For instance, contour tracking 
methods cannot detect potentially informative changes to the 
tongue musculature below the contour surface (Koppenhaver 
et al. 2009; Vasseljen et al. 2009) and are not suitable for 
tracking articulators that cannot be treated as a single 
deformable edge, in particular the larynx. 

In this article, we introduce the Speech Articulation Toolkit 
(SATKit; Palo et al. 2021), a freely available collection of 
Python 3 methods with an initial focus on direct quantitative 
analysis of the pixels in articulatory imaging data. We view 
these whole-image methods as complementary to contour 
tracking methods and potentially useful to a wider range of 
researchers using two-dimensional ultrasound imaging. All 
methods are designed to use raw scanline data stored by the 
Articulate Assistant Advanced software suite, an emerging 
standard for data collection, compact storage, and corpus 
development (Eshky et al. 2018; Ribeiro et al. 2021) which is 
accessible to a growing number of theoretical and clinical 
researchers. 

2. Overview of features 
SATKit is under development as of the writing of this 
manuscript. At the present moment, methods included in 
SATKit include pixel difference and optical flow, which 
characterize differences between pairs of images, and 
dimensionality reduction utilities for extracting dimensions of 
variation in pixel brightness. We review these features below. 

2.1. Pixel difference 
The pixel difference of a given pair of images is calculated as 
the Euclidean distance between them in terms of pixel 
intensity. This unitless measure captures the presence of 
change in an ultrasound signal, including tongue contour 
movement and changes in activation of the tongue’s intrinsic 
musculature. Pixel difference methods are particularly well-
suited to gauging the onset of articulation as a complement to 
reaction times measured from acoustics (e.g. McMillan & 
Corley 2010; Drake et al. 2013). 

SATKit provides implementations of both of the pixel 
difference methods described in Palo (2019): a whole-image 
method calculates pixel difference over all pixels in the pair; 
and a scanline-based method calculates pixel difference for 
each column of pixels in the data, providing a localized 
measure of change. Image data are not spatially downsampled, 
as they are in McMillan & Corley (2010). 

Whole-image pixel difference outputs a time series of distance 
values between ultrasound frame pairs of length n-1 where n is 
the length of the sequence of frames provided. Such a time 
series is shown in Figure 1, where frame-by-frame pixel 
difference values above about 500 (a floor due to the noise 
typical of ultrasound imaging) indicate movement of the 
imaged portion of the tongue. Scanline-based pixel difference, 
which is not shown in Figure 1, outputs arrays of shape (s, n-
1), where n is the length of the frame sequence as before and s 
is the number of scanlines in the data, effectively consisting of 
one vector of pixel distance values for each scan line. 

2.2. Optical flow 
A second method included in SATKit for characterizing 
frame-by-frame difference, optical flow characterizes the 
direction and magnitude of apparent motion between a pair of 
images. For each image pair, a field of vectors is computed 
which describes the “flow” of pixel brightness patterns (Horn 
& Schunck 1981). Optical flow has previously been applied to 
the analysis of ultrasound imaging data for medical (e.g., 
Danilouchkine et al. 2009) and phonetic research (Moisik et 
al. 2014; Poh & Moisik 2019).  



 
Figure 1: Whole-image pixel difference for an 

utterance [kɔt] ‘caught’ with waveform. Dashed line 
indicates go-signal (1kHz beep); onset of articulation 

(circled) precedes acoustic word onset. 

Optical flow does not depend on the visibility or tracking of 
specific structures for analysis, but rather captures holistic 
patterns of motion: reasonable results can be obtained 
provided there is enough frame-by-frame consistency (i.e., the 
differences between frames are small). Because of this, optical 
flow is especially well-suited to analysis of laryngeal 
ultrasound (Moisik et al. 2014; Poh & Moisik 2019), where 
tracking the movement of specific structures of the larynx 
using contour methods is infeasible. 

SATKit implements an optical flow method similar to that 
described in Moisik et al. (2014), but using dense optical flow 
(Farnebäck 2003), which is summarized in Figure 2. For a pair 
of frames of the same shape (m, n), a flow vector consisting of 
angle and magnitude measurements is calculated for each 
pixel. The vectors in the resulting flow field of shape (m, n, 2) 
are averaged to obtain a consensus vector for the entire field. 
Utilities are provided in SATKit for further processing of this 
signal: consensus vectors can be decomposed into velocity 
signals projected onto horizontal, vertical, or arbitrary oblique 
axes; and cumulative trapezoidal integration of velocity 
signals can be used to estimate displacement of rigid structures 
visible in the ultrasound’s field of view. Time series for 
consensus vectors and derived measures can be calculated 
across all frames in a recording for each successive pair of 
frames (Figure 3). 

SATKit provides both a batch-processing utility and a 
graphical user interface that allows for real-time visual 
inspection of the results of an optical flow analysis and for the 
adjustment of analysis parameters (region of interest, which 
component of the field is analyzed, etc.). The user interface 
also allows data to be exported in conventional formants (such 
as CSV) for further analysis with other software. 

2.3. Dimensionality reduction 
Dimensionality reduction characterizes the dimensions of 
variation in a data set by creating a small number of 
informative features from a much larger number of features. In 
SATKit, the especially large number of pixels in ultrasound 
images are reduced to patterns of covariation in pixel intensity, 
a method which has also seen use in some prior studies of 
lingual and laryngeal articulation (Hueber et al. 2007; Hoole & 
Pouplier, 2017; Mielke et al. 2017; Lin & Moisik, 2019). This 
approach is particularly useful for characterizing similarity and 
difference in articulation in speaker-specific terms. 

 
Figure 2: Schematic of SATKit optical flow 

calculation and derived measurements. 

 
Figure 3: Comparison of the vertical laryngeal 
displacement signal from SATKit, a manually 

validated displacement signal, and f0. 

SATKit implements principal components analysis (PCA) 
using the scikit-learn package (Pedregosa et al. 2011), with the 
pixels of an image set used as basis data. Utilities are included 
for inputting and outputting data from standardized caches, 
interpolation of raw scanline data to physical dimensions, and 
region of interest selection from raw scanline or interpolated 
data. Edge enhancement and filtering operations from 
Carignan (2014) are included to reduce imaging noise and 
improve the performance of the PCA, including a speckle-
reducing anisotropic diffusion filter specifically designed for 
ultrasound applications (Yu & Acton 2002). 

PCA yields principal components (PCs), uncorrelated 
dimensions which are rank-ordered by the proportion of 
variation in the basis data they explain. PC scores, which 
characterize each observation in the basis data in terms of its 
position on the new dimensions, are also produced. While 
dimensionality reduction over sufficiently large and diverse 



articulatory image sets typically captures linguistically relevant 
variation in the new reduced-dimensionality space (Johnson et 
al. 1993; Nix et al. 1996), it can be difficult to interpret PCs 
without further visualization of the uncovered patterns of 
covariation. SATKit thus includes tools for generating so-
called eigentongues (Hueber et al. 2007) or eigenlarynges for 
each PC, which visualize the by-pixel covariation captured by 
each PC in the shape of the basis data as an aid to determining 
the linguistic relevance of each PC. 

Figures 4-5 show a PCA case study from Faytak et al. (2020). 
Figure 4 shows representative raw and filtered tokens of a 
Mandarin Chinese speaker’s [n] and [ŋ] syllable codas and the 
eigentongue for the first PC for all filtered tokens of these 
phones; this eigentongue captures variation between the 
alveolar (deep red pixels) and velar (deep blue pixels) places 
of articulation. The first two principal components for this 
speaker (Figure 5, left) capture nasal place (PC1) and 
coarticulatory influence of the preceding vowel (PC2). The 
clustering of data in a second speaker’s PC1-PC2 space 
(Figure 5, right) show that the latter completely merges the 
two nasal codas after /i/ and partially collapses the distinction 
after non-high vowels, whereas the first speaker maintains the 
distinction in all environments. 

           /n/                             /ŋ/ 

 

 

 
Figure 4: Representative raw (top) and filtered 

(middle) tokens of [n] and [ŋ] from one speaker, and 
the eigentongue which captures variation in pixel 
brightness in all tokens of both nasals (bottom). 

 
Figure 5: Reduced-dimensionality spaces for the 

speaker shown in Figure 4 (left) and a second speaker 
with coda neutralization (right). Polarity and 
magnitude of PC scores is arbitrary; axes are 

arranged for clarity. 

3. Discussion and ongoing development 
In this paper, we have presented the Speech Articulation 
Toolkit (SATKit) and highlighted its methods for whole-
image analysis of the pixels in ultrasound imaging data. These 
methods are intended as a useful complement to contour 
tracking methods, which are broadly used in the speech 
sciences at present, but are not well-suited to all research 
questions that ultrasound data may be collected for. We hope 
that the common development of several non-contour methods 
in a single package will facilitate their further use and 
encourage further validation of their suitability to data beyond 
what is discussed here. For instance, while we have focused 
here on applications to ultrasound data, these methods are in 
theory applicable to other two-dimensional image-based 
articulatory data (face video, MRI) with extensions that may 
be included in future updates. 

SATKit is under active development and features will be 
added to all methods described here, in particular the 
dimensionality reduction utilities. Simple machine learning 
models for detection of articulatory states based on linear 
discriminant analysis are likely to be included in a future 
release, along the lines of those implemented in Carignan 
(2014) and used in, for example, Mielke et al. (2017) and 
Shaw et al. (2020). Furthermore, while contour segmentation 
and tracking are beyond the scope of this package, we 
ultimately plan for SATKit to include additional utilities for 
quantifying contour shape and deformation from imported 
contour data.  
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