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Abstract

We study computationally the dynamics of sound production in the vocal tract (VT). Our mathemat-
ical formulation is based on the three-dimensional wave equation, together with physically relevant
boundary conditions. We focus on formant and pressure information in the VT. For this purpose,
we make use of anatomical data obtained by MRI by other researchers. More precisely, we carry
out modal analysis on a geometric form of [ø:] produced by a native Swedish speaker. Our results
show encouraging evidence for the validity of the presented numerical model of the VT.
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1. Introduction

We study speech production by a physically faithful model. Our approach is based on
a Partial Differential Equation from mathematical physics that describes the wave prop-
agation in three-dimensional domains. This equation is known as the wave equation,
and it is given (together with appropriate boundary conditions) in equation (2) below.
In mathematical systems theory, this model can be studied in terms of conservative and
energy-dissipative linear systems; for such systems, see Malinen et al. (2006); Malinen
and Staffans (2006: 2007) and the references therein.

Articulatory models are a good way to learn about the speech production process.
It can be said that a decent articulatory speech synthesiser will make it possible to under-
stand fine details of speech production process. While realising such a synthesiser is still
far in the future, this work represents a step on the path leading there.

In the past, the VT acoustics has been modelled in a number of different ways.
The celebrated Kelly–Lochbaum model makes use of reflection coefficients obtained from
a variable diameter tube (Kelly and Lochbaum 1962). Such reflection coefficients appear
in, e.g., models from geophysics and in interpolation theory (see Foias and Frazho 1990).
We remark that the Kelly–Lochbaum model is closely related to the horn model described
by the Webster equation (see Fant 1970). More advanced two- and three-dimensional
descendants of the Kelly–Lochbaum model are the transmission line networks that have
been developed by El Masri et al. (1996: 1998); Mullen et al. (2006). For a recent review
of these models and related topics, see Palo (2006).

The wave equation model (2) is mathematically more refined and physically more
realistic than any of the models described in the previous paragraph. Unfortunately, the
analytic solution of (2) in complicated domains (such as the human VT) is not possible.
Instead, some numerical method must be used for the approximate solution of this model.



For this purpose, we use the Finite Element Method (FEM), which is a popular and well
established method in computational science. This is the approach used by e.g. Lu et al.
(1993) and Dedouch et al. (2002), too.

For the present computational approach, a fairly detailed geometric model of the
VT is necessary. Nowadays, accurate anatomical data can obtained by using Magnetic
Resonance Imaging (MRI). We are indebted to Dr. Olov Engwall (KTH) for kindly pro-
viding us with the required data and the associated experimental formant information.

The purpose of this paper is to present the modal analysis in an anatomical con-
figuration of [ø:] as produced by a native Swedish speaker. We obtain computationally
resonance frequencies, which correspond to formants. Moreover, these formants identify
the vowel [ø:] correctly in a larger set of measured data.

2. Acoustic Model

As mentioned above, the wave equation is a fundamental Partial Differential Equation in
acoustics and other areas of physics. It describes wave motion in a homogeneous medium.
Deriving the wave equation for sound pressure starts by assuming that the total pressure
P = P (r, t) can be expressed as

P (r, t) = P0 + p(r, t) (1)

where P0 is the static pressure, and p = p(r, t) is its perturbation at point r = (x, y, z)
at time t. The static pressure P0 is independent of t and r, and p is assumed to be small
compared to P0. With this notation, our acoustic model1 is given by



















ptt = c2∆p inside the VT,
∂p

∂ν
= 0 at the walls of the VT,

p = 0 at the mouth,

pt + c ∂p

∂ν
= u at the glottis.

(2)

Here u = u(r, t) is the glottis input, and c is the sound velocity in air in the VT. Now
the computational problem is to find the pressure function p(r, t) for a given glottal input
function u(r, t).

To derive (2) from “first principles”, one needs to assume that some thermody-
namic equation of state (such as pV = nRT for ideal gas) holds, and that the entropy
is kept constant. The topmost equation ptt = c2∆p in (2) — the wave equation itself
— can be derived by a long linearisation argument involving the continuity equation,
Euler equation and thermodynamic state equations; see, e.g., Fetter and Walecka (1980:
Chapter 9).

The wave equation model (2) is sophisticated enough to capture most of the rele-
vant properties of wave propagation in three-dimensional geometry (e.g., to detect cross
modes). However, it does not model turbulence, shock formation, or losses due to viscos-
ity and heat conduction. It can also be used as the theoretical starting point in deriving the
Webster equation mentioned above.

1In standard mathematical notation, a variable as a subscript indicates differentiation with respect to that

variable, ∆p is the Laplacian of p, i.e. ∆p = pxx + pyy + pzz, and ∂p
∂ν

= ν · ∇p stands for the derivative in
the direction of the outer normal vector ν of the surface.



We also need to take into account the walls and both ends of the VT in the model
(2). For this purpose, boundary conditions on these surfaces must be prescribed, and
these are the three remaining equations in (2). We regard the mouth as an open end of an
acoustic tube, and this is modelled by the Dirichlet boundary condition p(r, t) = 0 for all
r in the mouth opening for all times t. On the walls of the VT, we use the same Neumann
boundary condition ∂p

∂ν
= 0 that one would use at the closed end of a resonating tube. The

validity of these two boundary conditions is discussed by Fetter and Walecka (1980: pp.
306-307). At the glottis, we use a special scattering boundary condition that specifies the
ingoing sound pressure wave. Some motivation for this boundary condition can be found
in the examples given by Malinen (2004: pp. 25–34).

Once the equation and boundary conditions are given, we proceed to solve the
problem numerically. In our case, this means that given the ingoing wave u(r, t) at the
glottis, we would like to compute the pressure distribution p(r, t) inside the VT. In this
paper we solve an easier (yet relevant) problem related to the model (2); namely, we
determine the resonance frequencies corresponding to a particular configuration of the
VT. By Malinen and Staffans (2006: Theorem 2.3), the resonances of model (2) can be
solved as follows: find the complex frequencies λ and their nonzero eigenfunctions pλ(r)
such that the equations

{

λ2pλ = c2∆pλ in VT,
∂pλ

∂ν
= 0 on walls, pλ = 0 on mouth, and λpλ + c∂pλ

∂ν
= 0 on glottis

(3)

are satisfied. We remark that the equations (3) have nontrivial solutions pλ 6= 0 only for
some discrete values of λ. The imaginary parts of such particular λ’s correspond to the
angular frequencies of the formants.

3. Finite Element Method

The Finite Element Method (FEM) is an energy minimising interpolation method; see,
e.g., Johnson (1987) for an elementary treatment. It can be used to approximately solve
the variational forms of both the full time dependent problem (2) and the resonance prob-
lem (3).

To employ FEM, we first require a digitised geometric description for the boundary
of the VT. Then we need to partition, using common software tools, the volume of the VT
to an element mesh consisting of sufficiently many tetrahedrons. In this paper, we use
a mesh of n = 64254 elements and piecewise linear shape functions. This number of
elements is large enough to give accurate results in our setting.

Once the element mesh is completed, the implementation of FEM (in order to
solve either (2) or (3)) is an exercise in computer programming using, e.g., MATLAB
environment. Thus we obtain three n × n matrices, namely the stiffness matrix M , the
mass matrix N , and an additional matrix P representing the glottis boundary condition
in (3).

In the final step, we manipulate large systems of linear equations described by M ,
N , and P . When treating problem (3), we solve the following linear algebra problem:
find all complex numbers λ and corresponding nonzero vectors x(λ) such that

λ2
Mx(λ) + λcPx(λ) + c2

Nx(λ) = 0 (4)



is satisfied where c is the sound velocity. With some manipulations (Saad 1992), equation
(4) can be written in the form

Ay(λ) = λBy(λ), (5)

where A =
[

−cP −c2
N

I 0

]

, B = [ M 0
0 I

], and y(λ) =
[

λx(λ)
x(λ)

]

. This eigenvalue problem

can be immediately solved using, e.g., MATLAB.
The numbers λ computed from (5) are good approximations of the λ’s appearing

in (3), provided that the number n of elements is high enough. We also remark that for
this numerical formulation, there are as many such numbers λ as there are elements in
the mesh. However, only those that have smallest imaginary parts are interesting as they
correspond to the lowest formants F1, F2, etc..

4. Data

Figure 1 shows a sliced representation of the VT geometry that we have used as the basis
of our analysis. There are 29 slices, each consisting of 51 points, and they define the VT
from glottis to mouth. For faster computation, the slices were down-sampled by taking
into account only every fourth point.

The raw MRI data was collected from a native male speaker of Swedish while he
pronounced a prolonged vowel in supine position. Engwall and Badin (1999) describe the
MR imaging procedure and image post-processing. The vowel articulation was close to
[ø:]. Corresponding formant measurement data is also available on the same subject, and
it is reported in the same article. The formants were estimated from speech recorded on a
different occasion but with the same subject in a similar supine condition.

5. Results

The formants we obtained by solving (4) are shown in table 1. The computed formants
F1 to F4 are roughly 3 1

2 semitones too high compared to the measured values. This
offset between measured and computed formants has been estimated based on the first
four formants. The bottom row in table 1 shows the computed formants multiplied by
0.817, which corresponds to a difference of 3 1

2 semitones. We will discuss the physical
background of this discrepancy in section 6 below.

Table 1: Computed, measured, and scaled formants for [ø:] in kHz

F1 F2 F3 F4
Computed 0.68 1.35 2.71 3.79
Measured 0.50 1.06 2.48 3.24

Scaled 0.56 1.11 2.22 3.10

We also obtained from (4) the resonance modes pλ (see (3)) corresponding to the
formants F1-F4. These perturbation pressures are not given here in any physically relevant
scale. Rather, they have been normalised so that the maximum deviation from the static
pressure P0 is either 1 or -1. Figure 2 shows isobars for the modes. Figures 3 and 4 show
the pressure distributions of the modes. Figures 2 and 3 are plotted along a cross-sagittal
mid-line cut shown in figure 1.
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Figure 1: The vocal tract represented as 29 cross-sectional slices (bold lines) and the
surface defining the cross-sagittal mid-line cut (grey lines) used in figures 2 and 3. Mouth
is the last slice on the left and glottis the bottommost slice on the right.

6. Conclusions

Let us compare the computed and measured data in more detail. For this purpose, we
present table 2 by Engwall and Badin (1999) that contains the formants of long vowels in
the Swedish language.

Table 2: Formants (in kHz) of a Swedish speaking subject in supine position (Engwall
and Badin 1999)

IPA F1 F2 F3 F4 IPA F1 F2 F3 F4
u: 0.34 0.80 2.32 3.20 o: 0.40 0.74 2.40 3.14
A: 0.56 0.94 2.74 3.24 æ: 0.76 1.34 2.44 3.60
E: 0.60 1.62 2.46 3.54 e: 0.34 2.10 2.60 3.52
i: 0.32 1.58 3.04 3.72 y: 0.30 1.54 2.84 3.50

W: 0.36 1.72 2.54 3.28 ø: 0.50 1.06 2.48 3.24

The vowels from table 2, together with the scaled and computed [ø:]s,c from ta-
ble 1, are plotted in the (F2, F1)-plane in figure 5. Clearly, [ø:]s,c is closer to measured
[ø:] than to any other measured vowel, except possibly [A:]. To further clarify the situa-
tion, let us consider the formants F1 to F4 for [ø:]s,c, [ø:], and [A:] as vectors: [ø:]s,c =
(0.56, 1.11, 2.22, 3.10), [ø:] = (0.5, 1.06, 2.48, 3.24), and [A:] = (0.56, 0.94, 2.74, 3.24).
Then the Euclidean distance between [ø:]s,c and [ø:] is 0.31, but the distance between
[ø:]s,c and [A:] is significantly larger, equalling 0.57. This difference is explained by F3,
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Figure 2: Isobars corresponding to F1-F4 along a mid-line cut



Figure 3: Pressure distributions for F1-F4 along a mid-line cut



Figure 4: Pressure distributions for F1-F4 in the mid-sagittal plane
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Figure 5: Vowels in the (F2,F1)-plane. FEM oe (+) is the scaled, computed [ø:], EB99 oe
(*) is the measured [ø:] and EB99 (o) are other measured vowels. (EB99 denotes Engwall
and Badin (1999).)



since the fourth formants are almost the same. We conclude that the first two formants
classify the scaled, computed vowel [ø:]s,c almost correctly. Moreover, if we look at all
four available formants, even the remaining ambiguity disappears.

We remark that figures 2 and 3 supports the hypothesis that a weak cross-mode
resonance related to F4 should appear in the oral cavity.

As we pointed out earlier, the computed formants F1 to F4 differ from the corre-
sponding measured formants by 3 1

2 semitones. Having said that, the ratios between the
computed formants and the measured formants match each other very well. There is a
simple physical explanation why such a discrepancy is to be expected. In model (2), we
use the Dirichlet boundary condition on the lip opening. This results in a vibrational node
at the opening. In reality, such a node would appear further away outside the mouth since
we are surely able to hear the sound outside of a speakers VT. In that sense, the real life
VT is effectively longer than the one described by model (2), resulting in lower formants.
To get rid of this phenomenon, we should also model the surrounding acoustic space.
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